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In this study, free vibration characteristics of functionally graded (FG) blades whose ma-
terial properties change through the blade thickness are inspected. Finite Element Method
(FEM) is used to create blade models and to calculate natural frequencies. The blade formu-
lations are derived for both Euler-Bernoulli and Timoshenko beams to inspect the effect of
different parameters on vibration characteristics. For each beam, stiffness and mass matrices
are derived from energy expressions. In the solution part, effects of several parameters, i.e.
rotational speed, material properties, power law index parameter, different boundary condi-
tions and slenderness ratio are investigated. The calculated results are compared with those
in open literature and a very good agreement between them is confirmed, which reveals the
correctness and accuracy of the finite element formulation developed in this study. Formu-
lations are carried out in great detail and additionally, the results are displayed in several
figures and tables, which can be a significant source of information for authors working in
this area.
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1. Introduction

In industry and in lots of engineering applications, rotating components, turbines, helicopter
blades, rotors, etc. have a wide area of utility. Design, material properties and dynamic properties
of these structures and their components have significant effects on system efficiency. Helicopters
have different vibration problems since they consist of many components that are connected to
each other and since they have a complex rotating system. Therefore, frequencies and mode
shapes are used to determine dynamic properties of such structures.
The aim of this study is to develop a computer code by using the finite element method for

vibration analysis of a FG helicopter rotor blade whose material properties change in the thick-
ness direction. Functionally graded materials (FGMs) that have gained widespread application
are used to increase functional performance enhanced by the desired gradient of the material
properties. This variation provides continuous stress distribution in FG structures, whereas dis-
continuous stress distribution appears in another type of advanced materials, i.e. laminated
composites. Material properties of the beam such as elastic modulus, shear modulus, Poisson’s
ratio, material density are assumed to change continuously through the thickness direction as
a function of volume fraction and according to a simple power law. The concept of FGMs
originated from a group of material scientists in Japan as means of preparing thermal barrier
materials (Loy et al., 1999), and shortly began to take place in engineering applications at a
near future. FGM resulting from the development of composite material technology is a new
generation material that enables advanced engineering applications by reflecting mechanical,
physical and chemical properties of the materials it is made of. Nowadays, material properties
and composition of FGM, whose production areas and application fields are increasing day by
day with the development of additive manufacturing technology and powder metallurgy, are
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changing throughout the structure. The material change takes place in the form of a gradi-
ent connected to a function. Due to these properties, functional graded materials are used and
applied in many different sectors such as aerospace, automotive and medical. Several research
papers provide a good introduction and further references on the subject (Alshorbagy et al.,
2011; Giunta et al., 2011; Huang and Li, 2010; Lai et al., 2012; Loja et al., 2012; Thai and Vo,
2012; Wattanasakulpong et al., 2012).

In this study, FG blades whose material distribution changes in the thickness direction are
modeled, and vibration analyses are performed. In these studies, beam models with different
boundary conditions and material properties are investigated. For developing mathematical mod-
els and for the solution, the finite element method (FEM) is used. The blade formulations are
derived for both Euler-Bernoulli and Timoshenko beam theories to inspect the effect of different
parameters on vibration characteristics. For each beam theory, element stiffness and mass ma-
trices are derived from energy expressions. In the solution part, effects of several parameters, i.e.
rotational speed, material properties, power law index parameter, different boundary conditions,
rotary inertia, shear deformation and slenderness ratio are investigated. The calculated results
are compared with those in open literature and a very good agreement between them is found,
which reveals the correctness and accuracy of the finite element formulation developed in this
study.

2. Functionally graded beam model

In this study, energy expressions of a rotating beam which has different material properties in
different compositions changing through blade thickness, see Fig. 1., are used.

Fig. 1. Rotating, FG beam model

Here, a rotating FG beam of length L is fixed to a rigid hub with radius R. The beam height
is h and width is b, and the xyz axes represent a global orthogonal coordinate system with its
origin at the root of the beam. The beam is assumed to be rotating in the counter-clockwise
direction at a constant angular velocity Ω.

Material properties of the beam, i.e. modulus of elasticity E, shear modulus G, Poisson’s
ratio ν and material density ρ are assumed to vary continuously in the thickness direction z as
a function of the volume fraction, and the properties of the constituent materials according to
a simple power law. According to the rule of mixture, the effective material property P (z) is

P (z) = PtVt + PbVb (2.1)
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where Pt and Pb are material properties at the top and bottom surfaces of the beam while Vt
and Vb are corresponding volume fractions. The relation between the volume fractions is

Vt + Vb = 1 (2.2)

The volume fraction of the top constituent of the beam Vt is assumed to be given by

Vt =
( z

h
+
1

2

)n

n  0 (2.3)

Here n is a non-negative power law index parameter that dictates the material variation profile
through the beam thickness.
Considering Eqs. (2.1)-(2.3), the effective material properties can be rewritten as follows

P (z) = (Pt − Pb)
( z

h
+
1

2

)n

+ Pb (2.4)

It is evident from Eq. (2.4) that when z = h/2, E = Et, ν = νt, G = Gt, ρ = ρt and when
z = −h/2, E = Eb, ν = νb, G = Gb and ρ = ρb.

3. Energy expressions

In this Section, the potential and kinetic energy expressions are given both for a rotating Euler-
-Bernoulli beam and a rotating Timoshenko beam. The steps of derivation can be found in some
well-known papers in literature (Han et al., 1999; Latalski et al., 2017) in great detail by using
several explanatory figures and tables.
The cross-sectional and the longitudinal views of the Euler-Bernoulli beam that undergoes

axial displacement u0 and transverse displacement w are given in Figs. 2a and 2b, respectively.
Here, the reference point is chosen and represented by P0 before deformation and by P after
deformation.

Fig. 2. (a) Cross-sectional view, (b) longitudinal view of a rotating Euler-Bernoulli beam

In Fig. 2, y and z are the global coordinates while η and ξ are the corresponding local
coordinates. Here, η is the offset of the reference point from the z-axis, ξ is the offset of the
reference point from the middle plane, x is the offset of the reference point from the z-axis.
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Fig. 3. (a) Cross-sectional view, (b) longitudinal view of a rotating Timoshenko beam

The cross-sectional and the longitudinal views of the Timoshenko beam that undergoes axial
displacement u and transverse displacement, w are given in Figs. 3a and 3b, respectively.
Here, θ is rotation due to bending, and ϕ is the shear angle.
The potential energy expressions of the rotating Euler-Bernoulli and Timoshenko beam are

given in Eqs. (3.1)1 and (3.1)2, respectively

UEuler =
1

2

L
∫

0

[D11(θ
′)2 + FCF (x)(w

′)2] dx

UTimoshenko =
1

2

L
∫

0

[A11(u
′

0)
2 +B11u

′

0θ
′ +D11(θ

′)2 +A55(w
′
− θ)] dx

(3.1)

Here, the stiffness coefficients are

[A11, B11,D11] =

∫

A

E(z)[1, z, z2 ] dA (3.2)

where E(z) is the effective elasticity modulus calculated by Eq. (2.4).
The shear stiffness coefficient is given as follows, where k is the shear correction factor and

G(z) is the effective shear modulus, found from Eq. (2.4)

A55 = k

∫

A

G(z) dA (3.3)

The kinetic energy expression is the same for both types of beams, and is given by

T =
1

2

L
∫

0

[I1(u̇0)
2 + I1(ẇ)

2 + 2I2u̇0θ̇ + I3(θ̇)
2] dx (3.4)

where I1, I2 and I3 are the inertial characteristics of the beam, and are given below

[I1, I2, I3] =

∫

A

ρ(z)[1, z, z2 ] dA (3.5)

where ρ(z) is the effective material density, calculated by Eq. (2.4).
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The centrifugal force in Eq. (3.1)1 is

FCF =

L
∫

0

ρAΩ2(R+ x) dx =

L
∫

0

I1Ω
2(R + x) dx (3.6)

4. Finite element modeling

Finite element formulation of the rotating FG beam that undergoes axial and transverse dis-
placement is carried out in this Section. The global finite element model of the beam used for
the formulation is illustrated in Fig. 4a. In the case of the rotating beam, additional terms ap-
pear in the element matrices due to the centrifugal force. Finite element representation of the
centrifugal force, given in Fig. 4b, can be used.

Fig. 4. Finite element model of: (a) rotating FG beam, (b) centrifugal force

Here, Li is the offset of each element from the rotational axis, xyz is the global coordinate
system while x′y′z′ is the local coordinate system.

Referring to Fig. 4b, the centrifugal force given by Eq. (3.6) can be expressed in the finite
element form as follows

FCF (x) = I1Ω
2
[

R(L− Li − x
′) +
1

2
(L− Li − x

′)(L+ Li + x
′)
]

(4.1)

where the offset of each element from the rotational axis is given by

Li = (i− 1)
L

Ne
(4.2)

Here, L is length of the whole beam and Ne is the number of elements the beam is divided.
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4.1. Finite element modeling of the Euler-Bernoulli beam

The finite element model of the rotating Euler-Bernoulli beam element that undergoes axial
displacement u and transverse displacement w is given in Fig. 5.

Fig. 5. Finite element model of the Euler-Bernoulli beam element

Here, a two noded beam element that has six degrees of freedom is preferred for the modelling.
Here, u is the axial displacement, w is the transverse displacement and θ is the angle due to
transverse displacement.
Polynomials of appropriate order are defined for the displacement field as follows (Hartmann

and Katz, 2004)

u = a0 + a1x w = a2 + a3x+ a4x
2 + a5x

3

θ = w′ = a3 + 2a4x+ 3a5x
2

(4.3)

Considering the displacement field polynomials given by Eq. (4.3), the nodal displacements are
determined as displacement values at the first node of the element x = 0 and at the second node
x = Le, respectively. These are given in a matrix form as follows
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(4.4)

Here, (·)1 are displacement values of the 1st node while (·)2 are displacements on the 2nd node.
The relation between the displacement field and nodal displacements is

q = Nqe (4.5)

where, in the present beam model, the expressions of displacements q, nodal displacements qe
and the matrix of shape functions N are given by

q = [u,w, θ]T N = [Nu,Nw,Nθ]
T qe = [u1, w1, θ1, u2, w2, θ2]

T (4.6)

where the expressions of the shape functions are

Nu =

[

1−
x

L
, 0, 0,

x

L
, 0, 0

]

Nw =

[

0, 1−
3x2

L2e
+
2x3

L3e
, x−

2x2

Le
+
x3

L2e
, 0,
3x2

L2e
−
2x3

L3e
,−
x2

Le
+
x3

L2e

]

Nθ =

[

0,−
6x

L2e
+
6x2

L3e
, 1−

4x

Le
+
3x2

L2e
, 0,
6x

L2e
−
6x2

L3e
,−
2x

Le
+
3x2

L2e

]

(4.7)
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Here,Nu,Nw andNθ are the shape functions associated with the axial displacement u, transverse
displacement w and the angle due to transverse displacement θ, respectively.
Considering the effect of the centrifugal force and substituting the shape functions, i.e. Eqs.

(4.7)1,2, into the potential and kinetic energy expressions, i.e. Eq. (3.1)1 and Eq. (3.4), the
element stiffness matrix Ke and element mass matrix Me are obtained as follows

Ke =
1

2

Le
∫

0

(

A11
[dNu
dx

]TdNu
dx
+ 2B11

[dNu
dx

]TdNθ
dx

[dNθ
dx

]TdNu
dx
+D11

[dNθ
dx

]TdNθ
dx

)

dx

Me =
1

2

Le
∫

0

(

I1N
T
uNu + I1N

T
wNw + 2I2N

T
uNuN

T
θNθ + I3N

T
θNθ

)

dx

(4.8)

The element stiffness matrix is derived from the potential energy expression, and the element
mass matrice is derived from the kinetic energy expression.

4.2. Finite element modeling of the Timoshenko beam

The finite element model of the rotating Timoshenko beam element that undergoes axial
displacement u and transverse displacement w is given in Fig. 6. Here, it is seen that the two
noded beam element having eight degrees of freedom is preferred to model the beam. Here, θ is
the angle due to flapwise bending and ϕ is the shear angle which results from the Timoshenko
beam formulation.

Fig. 6. Finite element model of the Timoshenko beam element

Polynomials of appropriate order are defined for the displacement field as follows (Hartmann
and Katz, 2004)

u = a0 + a1x w = a2 + a3x+ a4x
2 + a5x

3

ϕ = a6 + a7x θ = w′ − ϕ = a3 − a6 + (2a4 − a7)x+ 3a5x
2

(4.9)

As described in the finite element modeling of the Euler-Bernoulli beam, the shape functions
are obtained as follows

Nu =

[

1−
x

L
, 0, 0, 0,

x

L
, 0, 0, 0

]

Nw =

[

0, 1 −
3x2

L2e
+
2x3

L3e
, x−
2x2

Le
+
x3

L2e
, x−
2x2

Le
+
x3

L2e
, 0,
3x2

L2e
−
2x3

L3e
,−
x2

Le
+
x3

L2e
,−
x2

Le
+
x3

L2e

]

(4.10)

Nθ =

[

0,−
6x

L2e
+
6x2

L3e
, 1−

4x

Le
+
3x2

L2e
,−
3x

Le
+
3x2

L2e
, 0,
6x

L2e
−
6x2

L3e
,−
2x

Le
+
3x2

L2e
,−
3x

Le
+
3x2

L2e

]

Nϕ =

[

0, 0, 0, 1 −
x

L
, 0, 0, 0,

x

L

]
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Here, Nu, Nw, Nθ and Nϕ are the shape functions associated with the axial displacement u,
transverse displacement w, angle due to transverse displacement θ and the shear angle ϕ, re-
spectively.

4.3. Stiffness and mass matrices

Considering the effect of the centrifugal force and substituting the shape functions, i.e. Eqs.
(4.10) into the potential and kinetic energy expressions Eq. (3.1)2 and (3.4), the element stiffness
matrix Ke and element mass matrix Me are obtained as follows

Ke =
1

2

Le
∫

0

(

A11
[dNu
dx

]TdNu
dx
+ 2B11

[dNu
dx

]TdNθ
dx

[dNθ
dx

]TdNu
dx

+D11
[dNθ
dx

]TdNθ
dx
+A55

(dNw
dx
−Nθ

)T(dNw
dx
−Nθ

)

)

dx

Me =
1

2

Le
∫

0

(

I1N
T
uNu + I1N

T
wNw + 2I2N

T
uNuN

T
θNθ + I3N

T
θNθ

)

dx

(4.11)

4.4. Global matrices and modal analysis

Depending on the number of elements used in the finite element modeling, all the element
matrices are assembled by considering the finite element rules to obtain the global matrices.
The boundary conditions given in Table 1 for different cases are applied to the global matrices
to get reduced matrices, and the following matrix system of equations are obtained

Mq̈+Kq = 0 (4.12)

whereM and K is the reduced global mass and global stiffness matrix, respectively. The elimi-
nated degrees of freedom are given in Table 1.

Table 1. Eliminated degrees of freedom in FEM for different boundary conditions

Boundary Euler beam FEM Timoshenko beam FEM
conditions x = 0 x = Le x = 0 x = Le

Clamped-free u = w = θ = 0 – u = w = θ = ϕ = 0 –

Simple-simple u = w = 0 u = w = 0 u = w = 0 u = w = 0

Modal analysis is applied to Eq. (4.12) to calculate the natural frequencies. Solving the follow-
ing determinant, the natural frequencies are calculated for the Euler-Benoulli and Timoshenko
beam models

det(K− ω2M) = 0 (4.13)

where ω represents the natural frequencies of the rotating system. In the following Sections, the
natural frequencies are declared in a nondimensional form λ, i.e. Eq. (5.1).

5. Results and discussions

In this Section, effects of several parameters, i.e. material distribution, rotational speed, slen-
derness ratio and the power law index on vibration characteristics are examined for both Euler-
-Bernoulli and Timoshenko beams having different boundary conditions and material distribu-
tion properties.
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5.1. Dimensionless parameters

To make comparisons with the studies in open literature, the following dimensionless param-
eters are defined (Özdemir, 2016)

x =
x

L
Ω
2
=
I1L
4Ω2

D11
λ =
ωL2

h

√

ρ

E

r2 =
I3
I1L2

w =
w

L
u0 =

u0
L

(5.1)

Here, λ is the dimensionless frequency parameter, Ω is the dimensionless angular speed param-
eter and r is the inverse of the slenderness ratio parameter.

6. Results for functionally graded beams

In this Section, vibration characterics of FG Euler-Bernoulli and Timoshenko beams are exam-
ined for two different material distributions.
In the first case, the FG beam is made of Aluminum (Al) at the top and Alumina (Al2O3)

at the bottom. The effective beam properties change through the beam thickness according to
the power law, Eq. (2.4). The material properties of the FG beam are displayed in Table 2 for
the 1st case.

Table 2. Material properties of functionally graded beam model (1st case)

Material property Aluminum (Al) Alumina (Al2O3)

Modulus of elasticity E 70GPa 380GPa

Density ρ 2702 kg/m3 3960 kg/m3

Poisson’s ratio ν 0.3 0.3

Table 3. The natural frequencies of nonrotating FG Euler-Bernoulli beam (CF and SS ends)

BC’s L/h λ =
ωL2

h

√

ρm
Em

n = 0 n = 0.2 n = 0.5 n = 1 n = 2 n = 5 n = 10

CF

5
Present 1.93846 1.80388 1.65105 1.49267 1.36168 1.29559 1.25751

Lee and Lee (2017) 1.9385 1.8037 1.6504 1.4914 1.3599 1.2942 1.2565
Şimşek (2010) 1.93845 1.80418 1.65057 1.49135 1.35985 1.29416 1.25648

20
Present 1.95249 1.81683 1.66313 1.50425 1.37325 1.30728 1.26816

Lee and Lee (2017) 1.9525 1.8167 1.6625 1.5029 1.3714 1.3057 1.2671
Şimşek (2010) 1.95248 1.81714 1.66265 1.50293 1.37142 1.30574 1.26713

SS

5
Present 12.1826 11.3371 10.3714 9.36547 8.52944 8.11103 7.88057

Lee and Lee (2017) 12.1826 11.3369 10.3708 9.3642 8.5277 8.1096 7.8797
Şimşek (2010) 12.1826 11.3398 10.3718 9.36422 8.52772 8.10955 7.87968

20
Present 12.4143 11.5509 10.5709 9.55664 8.72028 8.30209 8.05647

Lee and Lee (2017) 12.4143 11.5508 10.5703 9.5554 8.7186 8.3006 8.0556
Şimşek (2010) 12.4142 11.5537 10.5713 9.55538 8.71856 8.30064 8.05560

Variation of the fundamental frequencies of the FG nonrotating Euler-Bernoulli beam with
respect to the slenderness ratio and power law index parameter are given in Table 3 for different
boundary conditions, i.e. clamped-free (CF) and simply-simply supported (SS). The calculated
results are compared with those given by Şimşek (2010), where the Lagrange multipliers method
was used, and those given by Lee and Lee (2017), where Transfer Matrix Method was applied.



12 E.D. Karahan, Ö. Özdemir

The convergence of the Euler-Bernoulli beam frequencies given in Table 3 is drawn in Fig. 7.
When finite element runs are analysed, it is noticed that the fundamental natural frequencies of
the Euler-Bernoulli beam having the slenderness ratio of L/h = 20 get converged with N = 260
elements for n = 10 and with N = 320 elements for n = 5. At the same time fundamental
natural frequencies of the Euler beam having the slenderness ratio of L/h = 5 get converged
with N = 180 elements for n = 10 and with N = 240 elements for n = 5. Consequently, as the
power law index parameter increases, and as the slenderness ratio decreases, the fundamental
frequencies converge more rapidly.

Fig. 7. Convergence rate of the natural frequencies with respect to the slenderness ratio and the power
law index parameter

Variation of the fundamental frequencies of the FG nonrotating Timoshenko beam of the
slenderness ratio of L/h = 5 with respect to the power law index parameter is given in Table 4 for
different boundary conditions, i.e. clamped-free (CF) and simply-simply supported (SS) beams.
The calculated results are compared with those given by Şimşek (2010), where the Lagrange
multipliers method is used and with those given by Nguyen et al. (2015), where a new high
order shear deformation theory is applied.

Table 4. The natural frequencies of a nonrotating FG Timoshenko beam (L/h = 5)

BC’s λ =
ωL2

h

√

ρm
Em

n = 0 n = 0.5 n = 1 n = 2

CF
Present 1.89482 1.61724 1.46304 1.33380

Şimşek (2010) 1.89523 1.61817 1.46328 1.33254
Nguyen et al. (2015) 1.8957 1.6182 1.4636 1.3328

SS
Present 10.015 8.68448 7.91205 7.19908

Şimşek (2010) 10.0705 8.74674 7.95034 7.17674
Nguyen et al. (2015) 10.0726 8.7463 7.9518 7.1776

When Tables 3 and 4 are examined, it is noticed that the increasing power law index pa-
rameter has a decreasing effect on the natural frequencies. Moreover, the slenderness ratio has
a small increasing effect on the natural frequencies while the frequencies of clamped-free beams
are higher than the frequencies of simply-simply supported beams.
Variation of the fundamental frequencies of the FG rotating Timoshenko beam with respect

to the power law index parameter and slenderness ratio is given in Table 5 where the dimen-
sionless angular velocity is Ω = 5. The calculated results are compared with those given by
Özdemir (2019), where the differential transform method (DTM) which is an analytical method
that gives accurate results is applied.
When Table 5 is examined, it is noticed that there is a slight difference between the present

results and calculated by DTM because FEM is a numerical method while DTM is an analytical
method.



Finite element formulation and free vibration analyses... 13

Table 5. Natural frequencies of the rotating FG Timoshenko beam with CF ends

L/h
n = 0 n = 0.2 n = 0.5 n = 5

Özdemir
Present

Özdemir
Present

Özdemir
Present

Özdemir
Present

(2019) (2019) (2019) (2019)

4 3.4358 3.4569 2.8159 2.9013 2.6592 2.7753 2.4888 2.5877

5 3.4834 3.4976 2.8536 2.9351 2.6968 2.8099 2.5273 2.6227

In Fig. 8, variation of the natural frequencies of Euler-Bernoulli and Timoshenko beams with
respect to the power law index parameter n is demonstrated for the slenderness ratio L/h = 10.
The Euler-Bernoulli frequencies are shown with solid lines while the Timoshenko frequencies are
shown by dashed lines. When Fig. 8 is examined, it is noticed that the decreasing effect of the
power law index parameter is more dominant on higher frequencies. Additionally, the difference
between the Euler and Timoshenko theories gets more obvious in higher modes, as expected.

Fig. 8. Variation of Euler-Bernoulli and Timoshenko beam frequencies with respect to the power law
index parameter

As the 2nd case, the rotating functionally graded Timoshenko beam with clamped free
boundary conditions is analyzed and the material properties of this beam model is given in
Table 6. The beam is made of steel and alumina, and its geometrical properties are such that
h = 22.13mm, b = 2.66mm, L = 152.40mm.

Table 6. Material properties of the functionally graded rotating Timoshenko beam model (2nd
case)

Material property Steel (metal) Alumina (ceramic)

Modulus of elasticity E 214GPa 390GPa

Modulus of rigidity G 82.2GPa 137GPa

Density ρ 2800 kg/m3 3200 kg/m3

Poisson’s ratio ν 0.3 0.34
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Variation of the first three natural frequencies of the rotating functionally graded Timoshenko
beam with respect to the power index parameter n and the dimensionless rotational speed Ω is
tabulated in Table 7. When Table 7 is analyzed, as expected, it is noticed that the rotational
speed has an increasing effect on the natural frequencies due to the stiffening effect of the
centrifugal force.

Table 7. Variation of the natural frequencies of the rotating FG Timoshenko beam with respect
to n and Ω

Ω
Power law exponent n

0 0.2 0.5 1 2

0

2.1044 1.8009 1.5788 1.4125 1.2837
12.0822 10.3425 9.0692 8.1098 7.3583
30.3353 25.9775 22.7841 20.3616 18.4423
52.6304 45.0897 39.5540 35.3266 31.9426

2

2.4810 2.1231 1.8613 1.6653 1.5136
12.4466 10.6536 9.3419 8.3544 7.5816
30.7289 26.3125 23.0778 20.6258 18.6848
53.0853 45.4758 39.8925 35.6319 32.2243

5

3.8725 3.3138 2.9051 2.5993 2.3626
14.2034 12.1537 10.6571 9.5336 8.6574
32.7030 27.9932 24.5513 21.9509 19.9004
55.3945 47.4366 41.6114 37.1819 33.6533

7. Conclusion

In this study, finite element formulation of functionally graded Euler-Bernoulli and Timoshenko
beams that undergo axial and transverse displacements is derived step by step. The calculated
results are presented in several figures and tables and compared with those from open literature.
Considering the calculated results, the following conclusions are reached:

• As the slenderness ratio L/h increases, the natural frequencies increase.

• The natural frequencies decrease as the value of the power law exponent n increases,
and the decreasing effect of the power law index parameter is more dominant on higher
frequencies.

• As the power law index parameter increases and as the slenderness ratio decreases, the
fundamental frequencies converge more rapidly.

• The rotational speed has an increasing effect on the natural frequencies.
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